ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.12416
32
2

Enhancing Reliability of Neural Networks at the Edge: Inverted Normalization with Stochastic Affine Transformations

23 January 2024
Soyed Tuhin Ahmed
K. Danouchi
G. Prenat
L. Anghel
M. Tahoori
ArXivPDFHTML
Abstract

Bayesian Neural Networks (BayNNs) naturally provide uncertainty in their predictions, making them a suitable choice in safety-critical applications. Additionally, their realization using memristor-based in-memory computing (IMC) architectures enables them for resource-constrained edge applications. In addition to predictive uncertainty, however, the ability to be inherently robust to noise in computation is also essential to ensure functional safety. In particular, memristor-based IMCs are susceptible to various sources of non-idealities such as manufacturing and runtime variations, drift, and failure, which can significantly reduce inference accuracy. In this paper, we propose a method to inherently enhance the robustness and inference accuracy of BayNNs deployed in IMC architectures. To achieve this, we introduce a novel normalization layer combined with stochastic affine transformations. Empirical results in various benchmark datasets show a graceful degradation in inference accuracy, with an improvement of up to 58.11%58.11\%58.11%.

View on arXiv
Comments on this paper