ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.12570
14
4

DiffMoog: a Differentiable Modular Synthesizer for Sound Matching

23 January 2024
Noy Uzrad
Oren Barkan
Almog Elharar
Shlomi Shvartzman
Moshe Laufer
Lior Wolf
Noam Koenigstein
ArXivPDFHTML
Abstract

This paper presents DiffMoog - a differentiable modular synthesizer with a comprehensive set of modules typically found in commercial instruments. Being differentiable, it allows integration into neural networks, enabling automated sound matching, to replicate a given audio input. Notably, DiffMoog facilitates modulation capabilities (FM/AM), low-frequency oscillators (LFOs), filters, envelope shapers, and the ability for users to create custom signal chains. We introduce an open-source platform that comprises DiffMoog and an end-to-end sound matching framework. This framework utilizes a novel signal-chain loss and an encoder network that self-programs its outputs to predict DiffMoogs parameters based on the user-defined modular architecture. Moreover, we provide insights and lessons learned towards sound matching using differentiable synthesis. Combining robust sound capabilities with a holistic platform, DiffMoog stands as a premier asset for expediting research in audio synthesis and machine learning.

View on arXiv
Comments on this paper