ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.12820
27
2

DatUS^2: Data-driven Unsupervised Semantic Segmentation with Pre-trained Self-supervised Vision Transformer

23 January 2024
Sonal Kumar
Arijit Sur
R. Baruah
    ViT
ArXivPDFHTML
Abstract

Successive proposals of several self-supervised training schemes continue to emerge, taking one step closer to developing a universal foundation model. In this process, the unsupervised downstream tasks are recognized as one of the evaluation methods to validate the quality of visual features learned with a self-supervised training scheme. However, unsupervised dense semantic segmentation has not been explored as a downstream task, which can utilize and evaluate the quality of semantic information introduced in patch-level feature representations during self-supervised training of a vision transformer. Therefore, this paper proposes a novel data-driven approach for unsupervised semantic segmentation (DatUS^2) as a downstream task. DatUS^2 generates semantically consistent and dense pseudo annotate segmentation masks for the unlabeled image dataset without using any visual-prior or synchronized data. We compare these pseudo-annotated segmentation masks with ground truth masks for evaluating recent self-supervised training schemes to learn shared semantic properties at the patch level and discriminative semantic properties at the segment level. Finally, we evaluate existing state-of-the-art self-supervised training schemes with our proposed downstream task, i.e., DatUS^2. Also, the best version of DatUS^2 outperforms the existing state-of-the-art method for the unsupervised dense semantic segmentation task with 15.02% MiOU and 21.47% Pixel accuracy on the SUIM dataset. It also achieves a competitive level of accuracy for a large-scale and complex dataset, i.e., the COCO dataset.

View on arXiv
Comments on this paper