ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.12967
29
7

Measure transport with kernel mean embeddings

23 January 2024
Linfeng Wang
Nikolas Nusken
ArXivPDFHTML
Abstract

Kalman filters constitute a scalable and robust methodology for approximate Bayesian inference, matching first and second order moments of the target posterior. To improve the accuracy in nonlinear and non-Gaussian settings, we extend this principle to include more or different characteristics, based on kernel mean embeddings (KMEs) of probability measures into their corresponding Hilbert spaces. Focusing on the continuous-time setting, we develop a family of interacting particle systems (termed KME-dynamics\textit{KME-dynamics}KME-dynamics) that bridge between the prior and the posterior, and that include the Kalman-Bucy filter as a special case. A variant of KME-dynamics has recently been derived from an optimal transport perspective by Maurais and Marzouk, and we expose further connections to (kernelised) diffusion maps, leading to a variational formulation of regression type. Finally, we conduct numerical experiments on toy examples and the Lorenz-63 model, the latter of which show particular promise for a hybrid modification (called Kalman-adjusted KME-dynamics).

View on arXiv
Comments on this paper