ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.13247
11
7

A Human-Centered Review of Algorithms in Homelessness Research

24 January 2024
Erin Moon
Shion Guha
ArXivPDFHTML
Abstract

Homelessness is a humanitarian challenge affecting an estimated 1.6 billion people worldwide. In the face of rising homeless populations in developed nations and a strain on social services, government agencies are increasingly adopting data-driven models to determine one's risk of experiencing homelessness and assigning scarce resources to those in need. We conducted a systematic literature review of 57 papers to understand the evolution of these decision-making algorithms. We investigated trends in computational methods, predictor variables, and target outcomes used to develop the models using a human-centered lens and found that only 9 papers (15.7%) investigated model fairness and bias. We uncovered tensions between explainability and ecological validity wherein predictive risk models (53.4%) focused on reductive explainability while resource allocation models (25.9%) were dependent on unrealistic assumptions and simulated data that are not useful in practice. Further, we discuss research challenges and opportunities for developing human-centered algorithms in this area.

View on arXiv
Comments on this paper