ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.13314
19
2

An Explicit Scheme for Pathwise XVA Computations

24 January 2024
L. Abbas-Turki
Stéphane Crépey
Botao Li
Bouazza Saadeddine
ArXivPDFHTML
Abstract

Motivated by the equations of cross valuation adjustments (XVAs) in the realistic case where capital is deemed fungible as a source of funding for variation margin, we introduce a simulation/regression scheme for a class of anticipated BSDEs, where the coefficient entails a conditional expected shortfall of the martingale part of the solution. The scheme is explicit in time and uses neural network least-squares and quantile regressions for the embedded conditional expectations and expected shortfall computations. An a posteriori Monte Carlo validation procedure allows assessing the regression error of the scheme at each time step. The superiority of this scheme with respect to Picard iterations is illustrated in a high-dimensional and hybrid market/default risks XVA use-case.

View on arXiv
Comments on this paper