ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.13439
19
3

Model Predictive Wave Disturbance Rejection for Underwater Soft Robotic Manipulators

24 January 2024
Kyle L. Walker
Cosimo Della Santina
F. G. Serchi
ArXiv (abs)PDFHTML
Abstract

Inspired by the octopus and other animals living in water, soft robots should naturally lend themselves to underwater operations, as supported by encouraging validations in deep water scenarios. This work deals with equipping soft arms with the intelligence necessary to move precisely in wave-dominated environments, such as shallow waters where marine renewable devices are located. This scenario is substantially more challenging than calm deep water since, at low operational depths, hydrodynamic wave disturbances can represent a significant impediment. We propose a control strategy based on Nonlinear Model Predictive Control that can account for wave disturbances explicitly, optimising control actions by considering an estimate of oncoming hydrodynamic loads. The proposed strategy is validated through a set of tasks covering set-point regulation, trajectory tracking and mechanical failure compensation, all under a broad range of varying significant wave heights and peak spectral periods. The proposed control methodology displays positional error reductions as large as 84% with respect to a baseline controller, proving the effectiveness of the method. These initial findings present a first step in the development and deployment of soft manipulators for performing tasks in hazardous water environments.

View on arXiv
Comments on this paper