ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.15934
12
0

HICH Image/Text (HICH-IT): Comprehensive Text and Image Datasets for Hypertensive Intracerebral Hemorrhage Research

29 January 2024
Jie Li
Yulong Xia
Tongxin Yang
Fenglin Cai
Miao Wei
Zhiwei Zhang
Li Jiang
    VLM
ArXivPDFHTML
Abstract

In this paper, we introduce a new dataset in the medical field of hypertensive intracerebral hemorrhage (HICH), called HICH-IT, which includes both electronic medical records (EMRs) and head CT images. This dataset is designed to enhance the accuracy of artificial intelligence in the diagnosis and treatment of HICH. This dataset, built upon the foundation of standard text and image data, incorporates specific annotations within the EMRs, extracting key content from the text information, and categorizes the annotation content of imaging data into four types: brain midline, hematoma, left and right cerebral ventricle. HICH-IT aims to be a foundational dataset for feature learning in image segmentation tasks and named entity recognition. To further understand the dataset, we have trained deep learning algorithms to observe the performance. The pretrained models have been released at both www.daip.club and github.com/Deep-AI-Application-DAIP. The dataset has been uploaded to https://github.com/CYBUS123456/HICH-IT-Datasets. Index Terms-HICH, Deep learning, Intraparenchymal hemorrhage, named entity recognition, novel dataset

View on arXiv
Comments on this paper