ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.16672
21
2

AutoIE: An Automated Framework for Information Extraction from Scientific Literature

30 January 2024
Yangyang Liu
Shoubin Li
ArXivPDFHTML
Abstract

In the rapidly evolving field of scientific research, efficiently extracting key information from the burgeoning volume of scientific papers remains a formidable challenge. This paper introduces an innovative framework designed to automate the extraction of vital data from scientific PDF documents, enabling researchers to discern future research trajectories more readily. AutoIE uniquely integrates four novel components: (1) A multi-semantic feature fusion-based approach for PDF document layout analysis; (2) Advanced functional block recognition in scientific texts; (3) A synergistic technique for extracting and correlating information on molecular sieve synthesis; (4) An online learning paradigm tailored for molecular sieve literature. Our SBERT model achieves high Marco F1 scores of 87.19 and 89.65 on CoNLL04 and ADE datasets. In addition, a practical application of AutoIE in the petrochemical molecular sieve synthesis domain demonstrates its efficacy, evidenced by an impressive 78\% accuracy rate. This research paves the way for enhanced data management and interpretation in molecular sieve synthesis. It is a valuable asset for seasoned experts and newcomers in this specialized field.

View on arXiv
Comments on this paper