ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.17766
19
7

Fine-Grained Zero-Shot Learning: Advances, Challenges, and Prospects

31 January 2024
Jingcai Guo
Zhijie Rao
Song Guo
Jingren Zhou
Dacheng Tao
ArXivPDFHTML
Abstract

Recent zero-shot learning (ZSL) approaches have integrated fine-grained analysis, i.e., fine-grained ZSL, to mitigate the commonly known seen/unseen domain bias and misaligned visual-semantics mapping problems, and have made profound progress. Notably, this paradigm differs from existing close-set fine-grained methods and, therefore, can pose unique and nontrivial challenges. However, to the best of our knowledge, there remains a lack of systematic summaries of this topic. To enrich the literature of this domain and provide a sound basis for its future development, in this paper, we present a broad review of recent advances for fine-grained analysis in ZSL. Concretely, we first provide a taxonomy of existing methods and techniques with a thorough analysis of each category. Then, we summarize the benchmark, covering publicly available datasets, models, implementations, and some more details as a library. Last, we sketch out some related applications. In addition, we discuss vital challenges and suggest potential future directions.

View on arXiv
Comments on this paper