ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.00028
19
6

Neural Rendering and Its Hardware Acceleration: A Review

6 January 2024
Xinkai Yan
Jieting Xu
Yuchi Huo
Hujun Bao
    3DH
ArXivPDFHTML
Abstract

Neural rendering is a new image and video generation method based on deep learning. It combines the deep learning model with the physical knowledge of computer graphics, to obtain a controllable and realistic scene model, and realize the control of scene attributes such as lighting, camera parameters, posture and so on. On the one hand, neural rendering can not only make full use of the advantages of deep learning to accelerate the traditional forward rendering process, but also provide new solutions for specific tasks such as inverse rendering and 3D reconstruction. On the other hand, the design of innovative hardware structures that adapt to the neural rendering pipeline breaks through the parallel computing and power consumption bottleneck of existing graphics processors, which is expected to provide important support for future key areas such as virtual and augmented reality, film and television creation and digital entertainment, artificial intelligence and the metaverse. In this paper, we review the technical connotation, main challenges, and research progress of neural rendering. On this basis, we analyze the common requirements of neural rendering pipeline for hardware acceleration and the characteristics of the current hardware acceleration architecture, and then discuss the design challenges of neural rendering processor architecture. Finally, the future development trend of neural rendering processor architecture is prospected.

View on arXiv
Comments on this paper