ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.00033
11
6

LF-ViT: Reducing Spatial Redundancy in Vision Transformer for Efficient Image Recognition

8 January 2024
Youbing Hu
Yun Cheng
Anqi Lu
Zhiqiang Cao
Dawei Wei
Jie Liu
Zhijun Li
    ViT
ArXivPDFHTML
Abstract

The Vision Transformer (ViT) excels in accuracy when handling high-resolution images, yet it confronts the challenge of significant spatial redundancy, leading to increased computational and memory requirements. To address this, we present the Localization and Focus Vision Transformer (LF-ViT). This model operates by strategically curtailing computational demands without impinging on performance. In the Localization phase, a reduced-resolution image is processed; if a definitive prediction remains elusive, our pioneering Neighborhood Global Class Attention (NGCA) mechanism is triggered, effectively identifying and spotlighting class-discriminative regions based on initial findings. Subsequently, in the Focus phase, this designated region is used from the original image to enhance recognition. Uniquely, LF-ViT employs consistent parameters across both phases, ensuring seamless end-to-end optimization. Our empirical tests affirm LF-ViT's prowess: it remarkably decreases Deit-S's FLOPs by 63\% and concurrently amplifies throughput twofold. Code of this project is at https://github.com/edgeai1/LF-ViT.git.

View on arXiv
Comments on this paper