ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.00263
22
2

Does DetectGPT Fully Utilize Perturbation? Bridging Selective Perturbation to Fine-tuned Contrastive Learning Detector would be Better

1 February 2024
Shengchao Liu
Xiaoming Liu
Yichen Wang
Zehua Cheng
Chengzhengxu Li
Zhaohan Zhang
Y. Lan
Chao Shen
    DeLMO
ArXivPDFHTML
Abstract

The burgeoning generative capabilities of large language models (LLMs) have raised growing concerns about abuse, demanding automatic machine-generated text detectors. DetectGPT, a zero-shot metric-based detector, first introduces perturbation and shows great performance improvement. However, in DetectGPT, the random perturbation strategy could introduce noise, and logit regression depends on the threshold, harming the generalizability and applicability of individual or small-batch inputs. Hence, we propose a novel fine-tuned detector, Pecola, bridging metric-based and fine-tuned methods by contrastive learning on selective perturbation. Selective strategy retains important tokens during perturbation and weights for multi-pair contrastive learning. The experiments show that Pecola outperforms the state-of-the-art (SOTA) by 1.20% in accuracy on average on four public datasets. And we further analyze the effectiveness, robustness, and generalization of the method.

View on arXiv
Comments on this paper