ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.01375
16
7

Dive into the Chasm: Probing the Gap between In- and Cross-Topic Generalization

2 February 2024
Andreas Waldis
Yufang Hou
Iryna Gurevych
    ELM
ArXivPDFHTML
Abstract

Pre-trained language models (LMs) perform well in In-Topic setups, where training and testing data come from the same topics. However, they face challenges in Cross-Topic scenarios where testing data is derived from distinct topics -- such as Gun Control. This study analyzes various LMs with three probing-based experiments to shed light on the reasons behind the In- vs. Cross-Topic generalization gap. Thereby, we demonstrate, for the first time, that generalization gaps and the robustness of the embedding space vary significantly across LMs. Additionally, we assess larger LMs and underscore the relevance of our analysis for recent models. Overall, diverse pre-training objectives, architectural regularization, or data deduplication contribute to more robust LMs and diminish generalization gaps. Our research contributes to a deeper understanding and comparison of language models across different generalization scenarios.

View on arXiv
Comments on this paper