ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.01513
13
3

Multilingual Gradient Word-Order Typology from Universal Dependencies

2 February 2024
Emi Baylor
Esther Ploeger
Johannes Bjerva
ArXivPDFHTML
Abstract

While information from the field of linguistic typology has the potential to improve performance on NLP tasks, reliable typological data is a prerequisite. Existing typological databases, including WALS and Grambank, suffer from inconsistencies primarily caused by their categorical format. Furthermore, typological categorisations by definition differ significantly from the continuous nature of phenomena, as found in natural language corpora. In this paper, we introduce a new seed dataset made up of continuous-valued data, rather than categorical data, that can better reflect the variability of language. While this initial dataset focuses on word-order typology, we also present the methodology used to create the dataset, which can be easily adapted to generate data for a broader set of features and languages.

View on arXiv
Comments on this paper