ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.01744
19
0

Unveiling Molecular Moieties through Hierarchical Grad-CAM Graph Explainability

29 January 2024
Paolo Sortino
Salvatore Contino
Ugo Perricone
Roberto Pirrone
Roberto Pirrone
ArXivPDFHTML
Abstract

Background: Virtual Screening (VS) has become an essential tool in drug discovery, enabling the rapid and cost-effective identification of potential bioactive molecules. Among recent advancements, Graph Neural Networks (GNNs) have gained prominence for their ability to model complex molecular structures using graph-based representations. However, the integration of explainable methods to elucidate the specific contributions of molecular substructures to biological activity remains a significant challenge. This limitation hampers both the interpretability of predictive models and the rational design of novel therapeutics.\\ Results: We trained 20 GNN models on a dataset of small molecules with the goal of predicting their activity on 20 distinct protein targets from the Kinase family. These classifiers achieved state-of-the-art performance in virtual screening tasks, demonstrating high accuracy and robustness on different targets. Building upon these models, we implemented the Hierarchical Grad-CAM graph Explainer (HGE) framework, enabling an in-depth analysis of the molecular moieties driving protein-ligand binding stabilization. HGE exploits Grad-CAM explanations at the atom, ring, and whole-molecule levels, leveraging the message-passing mechanism to highlight the most relevant chemical moieties. Validation against experimental data from the literature confirmed the ability of the explainer to recognize a molecular pattern of drugs and correctly annotate them to the known target. Conclusion: Our approach may represent a valid support to shorten both the screening and the hit discovery process. Detailed knowledge of the molecular substructures that play a role in the binding process can help the computational chemist to gain insights into the structure optimization, as well as in drug repurposing tasks.

View on arXiv
@article{contino2025_2402.01744,
  title={ Unveiling Molecular Moieties through Hierarchical Grad-CAM Graph Explainability },
  author={ Salvatore Contino and Paolo Sortino and Maria Rita Gulotta and Ugo Perricone and Roberto Pirrone },
  journal={arXiv preprint arXiv:2402.01744},
  year={ 2025 }
}
Comments on this paper