95

Don't Label Twice: Quantity Beats Quality when Comparing Binary Classifiers on a Budget

Abstract

We study how to best spend a budget of noisy labels to compare the accuracy of two binary classifiers. It's common practice to collect and aggregate multiple noisy labels for a given data point into a less noisy label via a majority vote. We prove a theorem that runs counter to conventional wisdom. If the goal is to identify the better of two classifiers, we show it's best to spend the budget on collecting a single label for more samples. Our result follows from a non-trivial application of Cram\ér's theorem, a staple in the theory of large deviations. We discuss the implications of our work for the design of machine learning benchmarks, where they overturn some time-honored recommendations. In addition, our results provide sample size bounds superior to what follows from Hoeffding's bound.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.