36
5

Weisfeiler Leman for Euclidean Equivariant Machine Learning

Abstract

The kk-Weisfeiler-Leman (kk-WL) graph isomorphism test hierarchy is a common method for assessing the expressive power of graph neural networks (GNNs). Recently, GNNs whose expressive power is equivalent to the 22-WL test were proven to be universal on weighted graphs which encode 3D3\mathrm{D} point cloud data, yet this result is limited to invariant continuous functions on point clouds. In this paper, we extend this result in three ways: Firstly, we show that PPGN can simulate 22-WL uniformly on all point clouds with low complexity. Secondly, we show that 22-WL tests can be extended to point clouds which include both positions and velocities, a scenario often encountered in applications. Finally, we provide a general framework for proving equivariant universality and leverage it to prove that a simple modification of this invariant PPGN architecture can be used to obtain a universal equivariant architecture that can approximate all continuous equivariant functions uniformly. Building on our results, we develop our WeLNet architecture, which sets new state-of-the-art results on the N-Body dynamics task and the GEOM-QM9 molecular conformation generation task.

View on arXiv
Comments on this paper