ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.02951
22
2

Dynamic Byzantine-Robust Learning: Adapting to Switching Byzantine Workers

5 February 2024
Ron Dorfman
Naseem Yehya
Kfir Y. Levy
ArXivPDFHTML
Abstract

Byzantine-robust learning has emerged as a prominent fault-tolerant distributed machine learning framework. However, most techniques focus on the static setting, wherein the identity of Byzantine workers remains unchanged throughout the learning process. This assumption fails to capture real-world dynamic Byzantine behaviors, which may include intermittent malfunctions or targeted, time-limited attacks. Addressing this limitation, we propose DynaBRO -- a new method capable of withstanding any sub-linear number of identity changes across rounds. Specifically, when the number of such changes is O(T)\mathcal{O}(\sqrt{T})O(T​) (where TTT is the total number of training rounds), DynaBRO nearly matches the state-of-the-art asymptotic convergence rate of the static setting. Our method utilizes a multi-level Monte Carlo (MLMC) gradient estimation technique applied at the server to robustly aggregated worker updates. By additionally leveraging an adaptive learning rate, we circumvent the need for prior knowledge of the fraction of Byzantine workers.

View on arXiv
Comments on this paper