ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.03175
16
1

The Matrix: A Bayesian learning model for LLMs

5 February 2024
Siddhartha Dalal
Vishal Misra
ArXivPDFHTML
Abstract

In this paper, we introduce a Bayesian learning model to understand the behavior of Large Language Models (LLMs). We explore the optimization metric of LLMs, which is based on predicting the next token, and develop a novel model grounded in this principle. Our approach involves constructing an ideal generative text model represented by a multinomial transition probability matrix with a prior, and we examine how LLMs approximate this matrix. We discuss the continuity of the mapping between embeddings and multinomial distributions, and present the Dirichlet approximation theorem to approximate any prior. Additionally, we demonstrate how text generation by LLMs aligns with Bayesian learning principles and delve into the implications for in-context learning, specifically explaining why in-context learning emerges in larger models where prompts are considered as samples to be updated. Our findings indicate that the behavior of LLMs is consistent with Bayesian Learning, offering new insights into their functioning and potential applications.

View on arXiv
Comments on this paper