ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.03548
25
3

Single-GPU GNN Systems: Traps and Pitfalls

5 February 2024
Yidong Gong
A. Tarafder
Saima Afrin
Pradeep Kumar
    GNN
ArXivPDFHTML
Abstract

The current graph neural network (GNN) systems have established a clear trend of not showing training accuracy results, and directly or indirectly relying on smaller datasets for evaluations majorly. Our in-depth analysis shows that it leads to a chain of pitfalls in the system design and evaluation process, questioning the practicality of many of the proposed system optimizations, and affecting conclusions and lessons learned. We analyze many single-GPU systems and show the fundamental impact of these pitfalls. We further develop hypotheses, recommendations, and evaluation methodologies, and provide future directions. Finally, a new reference system is developed to establish a new line of optimizations rooted in solving the system-design pitfalls efficiently and practically. The proposed design can productively be integrated into prior works, thereby truly advancing the state-of-the-art.

View on arXiv
Comments on this paper