ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.04465
42
30

BAdaCost: Multi-class Boosting with Costs

6 February 2024
Antonio Fernández-Baldera
J. M. Buenaposada
Luis Baumela
ArXiv (abs)PDFHTML
Abstract

We present BAdaCost, a multi-class cost-sensitive classification algorithm. It combines a set of cost-sensitive multi-class weak learners to obtain a strong classification rule within the Boosting framework. To derive the algorithm we introduce CMEL, a Cost-sensitive Multi-class Exponential Loss that generalizes the losses optimized in various classification algorithms such as AdaBoost, SAMME, Cost-sensitive AdaBoost and PIBoost. Hence unifying them under a common theoretical framework. In the experiments performed we prove that BAdaCost achieves significant gains in performance when compared to previous multi-class cost-sensitive approaches. The advantages of the proposed algorithm in asymmetric multi-class classification are also evaluated in practical multi-view face and car detection problems.

View on arXiv
Comments on this paper