45
8

CLIF: Complementary Leaky Integrate-and-Fire Neuron for Spiking Neural Networks

Abstract

Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models. Compared to conventional deep Artificial Neural Networks (ANNs), SNNs exhibit superior efficiency and capability to process temporal information. However, it remains a challenge to train SNNs due to their undifferentiable spiking mechanism. The surrogate gradients method is commonly used to train SNNs, but often comes with an accuracy disadvantage over ANNs counterpart. We link the degraded accuracy to the vanishing of gradient on the temporal dimension through the analytical and experimental study of the training process of Leaky Integrate-and-Fire (LIF) Neuron-based SNNs. Moreover, we propose the Complementary Leaky Integrate-and-Fire (CLIF) Neuron. CLIF creates extra paths to facilitate the backpropagation in computing temporal gradient while keeping binary output. CLIF is hyperparameter-free and features broad applicability. Extensive experiments on a variety of datasets demonstrate CLIF's clear performance advantage over other neuron models. Furthermore, the CLIF's performance even slightly surpasses superior ANNs with identical network structure and training conditions. The code is available atthis https URL.

View on arXiv
@article{huang2025_2402.04663,
  title={ CLIF: Complementary Leaky Integrate-and-Fire Neuron for Spiking Neural Networks },
  author={ Yulong Huang and Xiaopeng Lin and Hongwei Ren and Haotian Fu and Yue Zhou and Zunchang Liu and Biao Pan and Bojun Cheng },
  journal={arXiv preprint arXiv:2402.04663},
  year={ 2025 }
}
Comments on this paper