ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.04971
11
10

Multi-Sender Persuasion: A Computational Perspective

7 February 2024
Safwan Hossain
Tonghan Wang
Tao Lin
Yiling Chen
David C. Parkes
Haifeng Xu
ArXivPDFHTML
Abstract

We consider the multi-sender persuasion problem: multiple players with informational advantage signal to convince a single self-interested actor to take certain actions. This problem generalizes the seminal Bayesian Persuasion framework and is ubiquitous in computational economics, multi-agent learning, and multi-objective machine learning. The core solution concept here is the Nash equilibrium of senders' signaling policies. Theoretically, we prove that finding an equilibrium in general is PPAD-Hard; in fact, even computing a sender's best response is NP-Hard. Given these intrinsic difficulties, we turn to finding local Nash equilibria. We propose a novel differentiable neural network to approximate this game's non-linear and discontinuous utilities. Complementing this with the extra-gradient algorithm, we discover local equilibria that Pareto dominates full-revelation equilibria and those found by existing neural networks. Broadly, our theoretical and empirical contributions are of interest to a large class of economic problems.

View on arXiv
Comments on this paper