ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.05002
26
1

Randomized Confidence Bounds for Stochastic Partial Monitoring

7 February 2024
M. Heuillet
Ola Ahmad
Audrey Durand
ArXivPDFHTML
Abstract

The partial monitoring (PM) framework provides a theoretical formulation of sequential learning problems with incomplete feedback. On each round, a learning agent plays an action while the environment simultaneously chooses an outcome. The agent then observes a feedback signal that is only partially informative about the (unobserved) outcome. The agent leverages the received feedback signals to select actions that minimize the (unobserved) cumulative loss. In contextual PM, the outcomes depend on some side information that is observable by the agent before selecting the action on each round. In this paper, we consider the contextual and non-contextual PM settings with stochastic outcomes. We introduce a new class of PM strategies based on the randomization of deterministic confidence bounds. We also extend regret guarantees to settings where existing stochastic strategies are not applicable. Our experiments show that the proposed RandCBP and RandCBPsidestar strategies have favorable performance against state-of-the-art baselines in multiple PM games. To advocate for the adoption of the PM framework, we design a use case on the real-world problem of monitoring the error rate of any deployed classification system.

View on arXiv
Comments on this paper