We present a compact spiking convolutional neural network (SCNN) and spiking
multilayer perceptron (SMLP) to recognize ten different gestures in dark and
bright light environments, using a 9.6single−photonavalanchediode(SPAD)array.Inourhandgesturerecognition(HGR)system,photonintensitydatawasleveragedtotrainandtestthenetwork.Avanillaconvolutionalneuralnetwork(CNN)wasalsoimplementedtocomparetheperformanceofSCNNwiththesamenetworktopologiesandtrainingstrategies.OurSCNNwastrainedfromscratchinsteadofbeingconvertedfromtheCNN.Wetestedthethreemodelsindarkandambientlight(AL)−corruptedenvironments.TheresultsindicatethatSCNNachievescomparableaccuracy(90.8operationswithonly8timesteps.SMLPalsopresentsatrade−offbetweencomputationalworkloadandaccuracy.Thecodeandcollecteddatasetsofthisworkareavailableathttps://github.com/zzy666666zzy/TinyLiDARNETSNN.