ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.06633
11
0

MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive and Dynamic Stock Investment Prediction

19 January 2024
Hao Qian
Hongting Zhou
Qian Zhao
Hao Chen
Hongxiang Yao
Jingwei Wang
Ziqi Liu
Fei Yu
Zhiqiang Zhang
Jun Zhou
    AIFin
ArXivPDFHTML
Abstract

The stock market is a crucial component of the financial system, but predicting the movement of stock prices is challenging due to the dynamic and intricate relations arising from various aspects such as economic indicators, financial reports, global news, and investor sentiment. Traditional sequential methods and graph-based models have been applied in stock movement prediction, but they have limitations in capturing the multifaceted and temporal influences in stock price movements. To address these challenges, the Multi-relational Dynamic Graph Neural Network (MDGNN) framework is proposed, which utilizes a discrete dynamic graph to comprehensively capture multifaceted relations among stocks and their evolution over time. The representation generated from the graph offers a complete perspective on the interrelationships among stocks and associated entities. Additionally, the power of the Transformer structure is leveraged to encode the temporal evolution of multiplex relations, providing a dynamic and effective approach to predicting stock investment. Further, our proposed MDGNN framework achieves the best performance in public datasets compared with state-of-the-art (SOTA) stock investment methods.

View on arXiv
Comments on this paper