ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.07183
13
6

A Random Ensemble of Encrypted Vision Transformers for Adversarially Robust Defense

11 February 2024
Ryota Iijima
Sayaka Shiota
Hitoshi Kiya
ArXivPDFHTML
Abstract

Deep neural networks (DNNs) are well known to be vulnerable to adversarial examples (AEs). In previous studies, the use of models encrypted with a secret key was demonstrated to be robust against white-box attacks, but not against black-box ones. In this paper, we propose a novel method using the vision transformer (ViT) that is a random ensemble of encrypted models for enhancing robustness against both white-box and black-box attacks. In addition, a benchmark attack method, called AutoAttack, is applied to models to test adversarial robustness objectively. In experiments, the method was demonstrated to be robust against not only white-box attacks but also black-box ones in an image classification task on the CIFAR-10 and ImageNet datasets. The method was also compared with the state-of-the-art in a standardized benchmark for adversarial robustness, RobustBench, and it was verified to outperform conventional defenses in terms of clean accuracy and robust accuracy.

View on arXiv
Comments on this paper