ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.08373
11
0

Time-Series Classification for Dynamic Strategies in Multi-Step Forecasting

13 February 2024
Riku W. Green
Grant Stevens
Telmo de Menezes e Silva Filho
Zahraa Abdallah
    AI4TS
ArXivPDFHTML
Abstract

Multi-step forecasting (MSF) in time-series, the ability to make predictions multiple time steps into the future, is fundamental to almost all temporal domains. To make such forecasts, one must assume the recursive complexity of the temporal dynamics. Such assumptions are referred to as the forecasting strategy used to train a predictive model. Previous work shows that it is not clear which forecasting strategy is optimal a priori to evaluating on unseen data. Furthermore, current approaches to MSF use a single (fixed) forecasting strategy. In this paper, we characterise the instance-level variance of optimal forecasting strategies and propose Dynamic Strategies (DyStrat) for MSF. We experiment using 10 datasets from different scales, domains, and lengths of multi-step horizons. When using a random-forest-based classifier, DyStrat outperforms the best fixed strategy, which is not knowable a priori, 94% of the time, with an average reduction in mean-squared error of 11%. Our approach typically triples the top-1 accuracy compared to current approaches. Notably, we show DyStrat generalises well for any MSF task.

View on arXiv
Comments on this paper