ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.08522
8
1

Fairness Auditing with Multi-Agent Collaboration

13 February 2024
M. Vos
Akash Dhasade
Jade Garcia Bourrée
Anne-Marie Kermarrec
Erwan Le Merrer
Benoit Rottembourg
Gilles Tredan
    MLAU
ArXivPDFHTML
Abstract

Existing work in fairness auditing assumes that each audit is performed independently. In this paper, we consider multiple agents working together, each auditing the same platform for different tasks. Agents have two levers: their collaboration strategy, with or without coordination beforehand, and their strategy for sampling appropriate data points. We theoretically compare the interplay of these levers. Our main findings are that (i) collaboration is generally beneficial for accurate audits, (ii) basic sampling methods often prove to be effective, and (iii) counter-intuitively, extensive coordination on queries often deteriorates audits accuracy as the number of agents increases. Experiments on three large datasets confirm our theoretical results. Our findings motivate collaboration during fairness audits of platforms that use ML models for decision-making.

View on arXiv
Comments on this paper