ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.10229
10
0

Mixture-Models: a one-stop Python Library for Model-based Clustering using various Mixture Models

8 February 2024
Siva Rajesh Kasa
Yijie Hu
Santhosh Kumar Kasa
Vaibhav Rajan
    VLM
ArXivPDFHTML
Abstract

\texttt{Mixture-Models} is an open-source Python library for fitting Gaussian Mixture Models (GMM) and their variants, such as Parsimonious GMMs, Mixture of Factor Analyzers, MClust models, Mixture of Student's t distributions, etc. It streamlines the implementation and analysis of these models using various first/second order optimization routines such as Gradient Descent and Newton-CG through automatic differentiation (AD) tools. This helps in extending these models to high-dimensional data, which is first of its kind among Python libraries. The library provides user-friendly model evaluation tools, such as BIC, AIC, and log-likelihood estimation. The source-code is licensed under MIT license and can be accessed at \url{https://github.com/kasakh/Mixture-Models}. The package is highly extensible, allowing users to incorporate new distributions and optimization techniques with ease. We conduct a large scale simulation to compare the performance of various gradient based approaches against Expectation Maximization on a wide range of settings and identify the corresponding best suited approach.

View on arXiv
Comments on this paper