ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.10724
8
1

Machine Learning based Prediction of Ditching Loads

16 February 2024
Henning Schwarz
Micha Überrück
J. Zemke
Thomas Rung
    MU
    AI4CE
ArXivPDFHTML
Abstract

We present approaches to predict dynamic ditching loads on aircraft fuselages using machine learning. The employed learning procedure is structured into two parts, the reconstruction of the spatial loads using a convolutional autoencoder (CAE) and the transient evolution of these loads in a subsequent part. Different CAE strategies are assessed and combined with either long short-term memory (LSTM) networks or Koopman-operator based methods to predict the transient behaviour. The training data is compiled by an extension of the momentum method of von-Karman and Wagner and the rationale of the training approach is briefly summarised. The application included refers to a full-scale fuselage of a DLR-D150 aircraft for a range of horizontal and vertical approach velocities at 6{\deg} incidence. Results indicate a satisfactory level of predictive agreement for all four investigated surrogate models examined, with the combination of an LSTM and a deep decoder CAE showing the best performance.

View on arXiv
Comments on this paper