ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.11712
27
5

Modelling Political Coalition Negotiations Using LLM-based Agents

18 February 2024
Farhad Moghimifar
Yuan-Fang Li
Robert Thomson
Gholamreza Haffari
    LLMAG
ArXivPDFHTML
Abstract

Coalition negotiations are a cornerstone of parliamentary democracies, characterised by complex interactions and strategic communications among political parties. Despite its significance, the modelling of these negotiations has remained unexplored with the domain of Natural Language Processing (NLP), mostly due to lack of proper data. In this paper, we introduce coalition negotiations as a novel NLP task, and model it as a negotiation between large language model-based agents. We introduce a multilingual dataset, POLCA, comprising manifestos of European political parties and coalition agreements over a number of elections in these countries. This dataset addresses the challenge of the current scope limitations in political negotiation modelling by providing a diverse, real-world basis for simulation. Additionally, we propose a hierarchical Markov decision process designed to simulate the process of coalition negotiation between political parties and predict the outcomes. We evaluate the performance of state-of-the-art large language models (LLMs) as agents in handling coalition negotiations, offering insights into their capabilities and paving the way for future advancements in political modelling.

View on arXiv
Comments on this paper