ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.11954
29
1

Multimodal Emotion Recognition from Raw Audio with Sinc-convolution

19 February 2024
Xiaohui Zhang
Wenjie Fu
Mangui Liang
ArXivPDFHTML
Abstract

Speech Emotion Recognition (SER) is still a complex task for computers with average recall rates usually about 70% on the most realistic datasets. Most SER systems use hand-crafted features extracted from audio signal such as energy, zero crossing rate, spectral information, prosodic, mel frequency cepstral coefficient (MFCC), and so on. More recently, using raw waveform for training neural network is becoming an emerging trend. This approach is advantageous as it eliminates the feature extraction pipeline. Learning from time-domain signal has shown good results for tasks such as speech recognition, speaker verification etc. In this paper, we utilize Sinc-convolution layer, which is an efficient architecture for preprocessing raw speech waveform for emotion recognition, to extract acoustic features from raw audio signals followed by a long short-term memory (LSTM). We also incorporate linguistic features and append a dialogical emotion decoding (DED) strategy. Our approach achieves a weighted accuracy of 85.1\% in four class emotion on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset.

View on arXiv
Comments on this paper