ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.12264
15
13

Uncertainty quantification in fine-tuned LLMs using LoRA ensembles

19 February 2024
Oleksandr Balabanov
H. Linander
    UQCV
ArXivPDFHTML
Abstract

Fine-tuning large language models can improve task specific performance, although a general understanding of what the fine-tuned model has learned, forgotten and how to trust its predictions is still missing. We derive principled uncertainty quantification for fine-tuned LLMs with posterior approximations using computationally efficient low-rank adaptation ensembles. We analyze three common multiple-choice datasets using low-rank adaptation ensembles based on Mistral-7b, and draw quantitative and qualitative conclusions on their perceived complexity and model efficacy on the different target domains during and after fine-tuning. In particular, backed by the numerical experiments, we hypothesise about signals from entropic uncertainty measures for data domains that are inherently difficult for a given architecture to learn.

View on arXiv
Comments on this paper