ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.14759
19
0

Generalising realisability in statistical learning theory under epistemic uncertainty

22 February 2024
Fabio Cuzzolin
    CML
ArXivPDFHTML
Abstract

The purpose of this paper is to look into how central notions in statistical learning theory, such as realisability, generalise under the assumption that train and test distribution are issued from the same credal set, i.e., a convex set of probability distributions. This can be considered as a first step towards a more general treatment of statistical learning under epistemic uncertainty.

View on arXiv
Comments on this paper