ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.16158
36
0

Distribution-Free Fair Federated Learning with Small Samples

25 February 2024
Qichuan Yin
Junzhou Huang
Huaxiu Yao
Linjun Zhang
    FedML
ArXivPDFHTML
Abstract

As federated learning gains increasing importance in real-world applications due to its capacity for decentralized data training, addressing fairness concerns across demographic groups becomes critically important. However, most existing machine learning algorithms for ensuring fairness are designed for centralized data environments and generally require large-sample and distributional assumptions, underscoring the urgent need for fairness techniques adapted for decentralized and heterogeneous systems with finite-sample and distribution-free guarantees. To address this issue, this paper introduces FedFaiREE, a post-processing algorithm developed specifically for distribution-free fair learning in decentralized settings with small samples. Our approach accounts for unique challenges in decentralized environments, such as client heterogeneity, communication costs, and small sample sizes. We provide rigorous theoretical guarantees for both fairness and accuracy, and our experimental results further provide robust empirical validation for our proposed method.

View on arXiv
Comments on this paper