ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.16473
21
3

DCVSMNet: Double Cost Volume Stereo Matching Network

26 February 2024
Mahmoud Tahmasebi
Saif Huq
Kevin Meehan
Marion McAfee
    3DV
ArXivPDFHTML
Abstract

We introduce Double Cost Volume Stereo Matching Network(DCVSMNet) which is a novel architecture characterised by by two small upper (group-wise) and lower (norm correlation) cost volumes. Each cost volume is processed separately, and a coupling module is proposed to fuse the geometry information extracted from the upper and lower cost volumes. DCVSMNet is a fast stereo matching network with a 67 ms inference time and strong generalization ability which can produce competitive results compared to state-of-the-art methods. The results on several bench mark datasets show that DCVSMNet achieves better accuracy than methods such as CGI-Stereo and BGNet at the cost of greater inference time.

View on arXiv
Comments on this paper