ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.17970
27
0

Exploring Advanced Methodologies in Security Evaluation for LLMs

28 February 2024
Junming Huang
Jiawei Zhang
Qi Wang
Weihong Han
Yanchun Zhang
ArXivPDFHTML
Abstract

Large Language Models (LLMs) represent an advanced evolution of earlier, simpler language models. They boast enhanced abilities to handle complex language patterns and generate coherent text, images, audios, and videos. Furthermore, they can be fine-tuned for specific tasks. This versatility has led to the proliferation and extensive use of numerous commercialized large models. However, the rapid expansion of LLMs has raised security and ethical concerns within the academic community. This emphasizes the need for ongoing research into security evaluation during their development and deployment. Over the past few years, a substantial body of research has been dedicated to the security evaluation of large-scale models. This article an in-depth review of the most recent advancements in this field, providing a comprehensive analysis of commonly used evaluation metrics, advanced evaluation frameworks, and the routine evaluation processes for LLMs. Furthermore, we also discuss the future directions for advancing the security evaluation of LLMs.

View on arXiv
Comments on this paper