ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.01585
26
1
v1v2 (latest)

Calibrating doubly-robust estimators with unbalanced treatment assignment

3 March 2024
Daniele Ballinari
ArXiv (abs)PDFHTML
Abstract

Machine learning methods, particularly the double machine learning (DML) estimator (Chernozhukov et al., 2018), are increasingly popular for the estimation of the average treatment effect (ATE). However, datasets often exhibit unbalanced treatment assignments where only a few observations are treated, leading to unstable propensity score estimations. We propose a simple extension of the DML estimator which undersamples data for propensity score modeling and calibrates scores to match the original distribution. The paper provides theoretical results showing that the estimator retains the DML estimator's asymptotic properties. A simulation study illustrates the finite sample performance of the estimator.

View on arXiv
Comments on this paper