ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.02697
20
0

Noise misleads rotation invariant algorithms on sparse targets

5 March 2024
Manfred K. Warmuth
Wojciech Kotlowski
Matt Jones
Ehsan Amid
ArXivPDFHTML
Abstract

It is well known that the class of rotation invariant algorithms are suboptimal even for learning sparse linear problems when the number of examples is below the "dimension" of the problem. This class includes any gradient descent trained neural net with a fully-connected input layer (initialized with a rotationally symmetric distribution). The simplest sparse problem is learning a single feature out of ddd features. In that case the classification error or regression loss grows with 1−k/n1-k/n1−k/n where kkk is the number of examples seen. These lower bounds become vacuous when the number of examples kkk reaches the dimension ddd. We show that when noise is added to this sparse linear problem, rotation invariant algorithms are still suboptimal after seeing ddd or more examples. We prove this via a lower bound for the Bayes optimal algorithm on a rotationally symmetrized problem. We then prove much lower upper bounds on the same problem for simple non-rotation invariant algorithms. Finally we analyze the gradient flow trajectories of many standard optimization algorithms in some simple cases and show how they veer toward or away from the sparse targets. We believe that our trajectory categorization will be useful in designing algorithms that can exploit sparse targets and our method for proving lower bounds will be crucial for analyzing other families of algorithms that admit different classes of invariances.

View on arXiv
Comments on this paper