ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.03122
17
7

NRDF: Neural Riemannian Distance Fields for Learning Articulated Pose Priors

5 March 2024
Yannan He
Garvita Tiwari
Tolga Birdal
J. E. Lenssen
Gerard Pons-Moll
ArXivPDFHTML
Abstract

Faithfully modeling the space of articulations is a crucial task that allows recovery and generation of realistic poses, and remains a notorious challenge. To this end, we introduce Neural Riemannian Distance Fields (NRDFs), data-driven priors modeling the space of plausible articulations, represented as the zero-level-set of a neural field in a high-dimensional product-quaternion space. To train NRDFs only on positive examples, we introduce a new sampling algorithm, ensuring that the geodesic distances follow a desired distribution, yielding a principled distance field learning paradigm. We then devise a projection algorithm to map any random pose onto the level-set by an adaptive-step Riemannian optimizer, adhering to the product manifold of joint rotations at all times. NRDFs can compute the Riemannian gradient via backpropagation and by mathematical analogy, are related to Riemannian flow matching, a recent generative model. We conduct a comprehensive evaluation of NRDF against other pose priors in various downstream tasks, i.e., pose generation, image-based pose estimation, and solving inverse kinematics, highlighting NRDF's superior performance. Besides humans, NRDF's versatility extends to hand and animal poses, as it can effectively represent any articulation.

View on arXiv
Comments on this paper