ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.04436
21
78

Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation

7 March 2024
Tairan He
Zhengyi Luo
Wenli Xiao
Chong Zhang
Kris M. Kitani
Changliu Liu
Guanya Shi
ArXivPDFHTML
Abstract

We present Human to Humanoid (H2O), a reinforcement learning (RL) based framework that enables real-time whole-body teleoperation of a full-sized humanoid robot with only an RGB camera. To create a large-scale retargeted motion dataset of human movements for humanoid robots, we propose a scalable "sim-to-data" process to filter and pick feasible motions using a privileged motion imitator. Afterwards, we train a robust real-time humanoid motion imitator in simulation using these refined motions and transfer it to the real humanoid robot in a zero-shot manner. We successfully achieve teleoperation of dynamic whole-body motions in real-world scenarios, including walking, back jumping, kicking, turning, waving, pushing, boxing, etc. To the best of our knowledge, this is the first demonstration to achieve learning-based real-time whole-body humanoid teleoperation.

View on arXiv
Comments on this paper