ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.04553
28
0

Improvements & Evaluations on the MLCommons CloudMask Benchmark

7 March 2024
Varshitha Chennamsetti
Laiba Mehnaz
Dan Zhao
Banani Ghosh
Sergey V. Samsonau
    VLM
    FedML
ArXivPDFHTML
Abstract

In this paper, we report the performance benchmarking results of deep learning models on MLCommons' Science cloud-masking benchmark using a high-performance computing cluster at New York University (NYU): NYU Greene. MLCommons is a consortium that develops and maintains several scientific benchmarks that can benefit from developments in AI. We provide a description of the cloud-masking benchmark task, updated code, and the best model for this benchmark when using our selected hyperparameter settings. Our benchmarking results include the highest accuracy achieved on the NYU system as well as the average time taken for both training and inference on the benchmark across several runs/seeds. Our code can be found on GitHub. MLCommons team has been kept informed about our progress and may use the developed code for their future work.

View on arXiv
Comments on this paper