ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.04764
27
2

TS-RSR: A provably efficient approach for batch bayesian optimization

7 March 2024
Zhaolin Ren
Na Li
ArXivPDFHTML
Abstract

This paper presents a new approach for batch Bayesian Optimization (BO) called Thompson Sampling-Regret to Sigma Ratio directed sampling (TS-RSR), where we sample a new batch of actions by minimizing a Thompson Sampling approximation of a regret to uncertainty ratio. Our sampling objective is able to coordinate the actions chosen in each batch in a way that minimizes redundancy between points whilst focusing on points with high predictive means or high uncertainty. Theoretically, we provide rigorous convergence guarantees on our algorithm's regret, and numerically, we demonstrate that our method attains state-of-the-art performance on a range of challenging synthetic and realistic test functions, where it outperforms several competitive benchmark batch BO algorithms.

View on arXiv
Comments on this paper