Video-Based Design (VBD) is a design methodology that utilizes video as a primary tool for understanding user interactions, prototyping, and conducting research to enhance the design process. Artificial Intelligence (AI) can be instrumental in video-based design by analyzing and interpreting visual data from videos to enhance user interaction, automate design processes, and improve product functionality. In this study, we explore how AI can enhance professional video-based design with a State-of-the-Art (SOTA) deep learning model. We developed a prototype annotation platform (MarkupLens) and conducted a between-subjects eye-tracking study with 36 designers, annotating videos with three levels of AI assistance. Our findings indicate that MarkupLens improved design annotation quality and productivity. Additionally, it reduced the cognitive load that designers exhibited and enhanced their User Experience (UX). We believe that designer-AI collaboration can greatly enhance the process of eliciting insights in video-based design.
View on arXiv