ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.05738
38
2

Provable Policy Gradient Methods for Average-Reward Markov Potential Games

9 March 2024
Min Cheng
Ruida Zhou
P. R. Kumar
Chao Tian
ArXivPDFHTML
Abstract

We study Markov potential games under the infinite horizon average reward criterion. Most previous studies have been for discounted rewards. We prove that both algorithms based on independent policy gradient and independent natural policy gradient converge globally to a Nash equilibrium for the average reward criterion. To set the stage for gradient-based methods, we first establish that the average reward is a smooth function of policies and provide sensitivity bounds for the differential value functions, under certain conditions on ergodicity and the second largest eigenvalue of the underlying Markov decision process (MDP). We prove that three algorithms, policy gradient, proximal-Q, and natural policy gradient (NPG), converge to an ϵ\epsilonϵ-Nash equilibrium with time complexity O(1ϵ2)O(\frac{1}{\epsilon^2})O(ϵ21​), given a gradient/differential Q function oracle. When policy gradients have to be estimated, we propose an algorithm with O~(1min⁡s,aπ(a∣s)δ)\tilde{O}(\frac{1}{\min_{s,a}\pi(a|s)\delta})O~(mins,a​π(a∣s)δ1​) sample complexity to achieve δ\deltaδ approximation error w.r.t~the ℓ2\ell_2ℓ2​ norm. Equipped with the estimator, we derive the first sample complexity analysis for a policy gradient ascent algorithm, featuring a sample complexity of O~(1/ϵ5)\tilde{O}(1/\epsilon^5)O~(1/ϵ5). Simulation studies are presented.

View on arXiv
Comments on this paper