ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.06421
31
2

A Comparative Study of Perceptual Quality Metrics for Audio-driven Talking Head Videos

11 March 2024
Weixia Zhang
Chengguang Zhu
Jingnan Gao
Yichao Yan
Guangtao Zhai
Xiaokang Yang
    EGVM
ArXivPDFHTML
Abstract

The rapid advancement of Artificial Intelligence Generated Content (AIGC) technology has propelled audio-driven talking head generation, gaining considerable research attention for practical applications. However, performance evaluation research lags behind the development of talking head generation techniques. Existing literature relies on heuristic quantitative metrics without human validation, hindering accurate progress assessment. To address this gap, we collect talking head videos generated from four generative methods and conduct controlled psychophysical experiments on visual quality, lip-audio synchronization, and head movement naturalness. Our experiments validate consistency between model predictions and human annotations, identifying metrics that align better with human opinions than widely-used measures. We believe our work will facilitate performance evaluation and model development, providing insights into AIGC in a broader context. Code and data will be made available at https://github.com/zwx8981/ADTH-QA.

View on arXiv
Comments on this paper