ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.07004
21
0

Convergence of Some Convex Message Passing Algorithms to a Fixed Point

7 March 2024
Václav Voráček
Tomas Werner
ArXivPDFHTML
Abstract

A popular approach to the MAP inference problem in graphical models is to minimize an upper bound obtained from a dual linear programming or Lagrangian relaxation by (block-)coordinate descent. This is also known as convex/convergent message passing; examples are max-sum diffusion and sequential tree-reweighted message passing (TRW-S). Convergence properties of these methods are currently not fully understood. They have been proved to converge to the set characterized by local consistency of active constraints, with unknown convergence rate; however, it was not clear if the iterates converge at all (to any point). We prove a stronger result (conjectured before but never proved): the iterates converge to a fixed point of the method. Moreover, we show that the algorithm terminates within O(1/ε)\mathcal{O}(1/\varepsilon)O(1/ε) iterations. We first prove this for a version of coordinate descent applied to a general piecewise-affine convex objective. Then we show that several convex message passing methods are special cases of this method. Finally, we show that a slightly different version of coordinate descent can cycle.

View on arXiv
Comments on this paper