ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.07786
29
0

Generative deep learning-enabled ultra-large field-of-view lens-free imaging

12 March 2024
Ronald B. Liu
Zhe Liu
Max G.A. Wolf
Krishna P. Purohit
Gregor Fritz
Yi Feng
C. G. Hansen
Pierre Bagnaninchi
X. C. I. Solvas
Yunjie Yang
    MedIm
ArXivPDFHTML
Abstract

Advancements in high-throughput biomedical applications necessitate real-time, large field-of-view (FOV) imaging capabilities. Conventional lens-free imaging (LFI) systems, while addressing the limitations of physical lenses, have been constrained by dynamic, hard-to-model optical fields, resulting in a limited one-shot FOV of approximately 20 mm2mm^2mm2. This restriction has been a major bottleneck in applications like live-cell imaging and automation of microfluidic systems for biomedical research. Here, we present a deep-learning(DL)-based imaging framework - GenLFI - leveraging generative artificial intelligence (AI) for holographic image reconstruction. We demonstrate that GenLFI can achieve a real-time FOV over 550 mm2mm^2mm2, surpassing the current LFI system by more than 20-fold, and even larger than the world's largest confocal microscope by 1.76 times. The resolution is at the sub-pixel level of 5.52 μm\mu mμm, without the need for a shifting light source. The unsupervised learning-based reconstruction does not require optical field modeling, making imaging dynamic 3D samples (e.g., droplet-based microfluidics and 3D cell models) in complex optical fields possible. This GenLFI framework unlocks the potential of LFI systems, offering a robust tool to tackle new frontiers in high-throughput biomedical applications such as drug discovery.

View on arXiv
Comments on this paper